

aerOS

Autonomous, scalablE, tRustworthy, intelligent European meta Operating System for the IoT edge-cloud continuum

¿Qué es aerOS?

Un vistazo rápido

Algunos datos

Algo de historia

1989

The first IoT device is created

2008

2007

launched

First iPhone is

The number of connected devices overtakes the number of people in the world and IoT is 'born'

2009

The original Fitbit activity tracker is released

IIoT comes into being

WORLD ECONOMIC FORUM

technological advancements

2021

2022

More than 10 billion active IoT devices active

World Economic Forum

names IoT as one of the

three most impactful

1994

Steve Mann creates WearCam

2005

UN publishes its first report on the Internet of Things

2014

Seoul becomes the world's first smart city

2020

The number of IoT device connections increased more than 50% of the active connected devices

1999

Kevin Ashton coins the term Internet of Things

2000

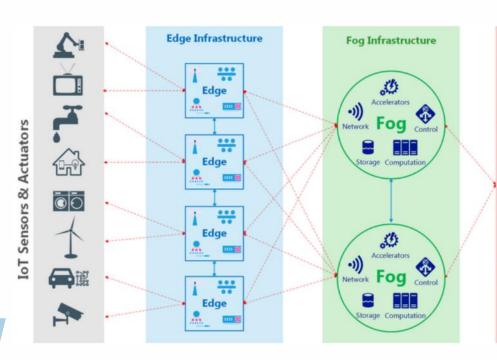
LG announces the first smart refrigerator

2015

IoT goes Mobile with smartphones

2016

AWS IoT core is launched



Retos

Cloud Infrastructure

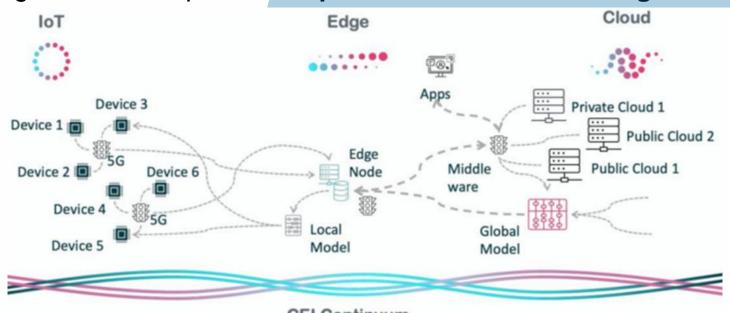
Gran crecimiento del volumen de datos y evolución constante de las capacidades de infraestructuras virtuales

El 80 % de los datos se procesa en la nube por diseño.

Baja latencia necesaria en aplicaciones críticas

Necesidad de soluciones escalables y con capacidad de evolucionar en el largo plazo.

Heterogeneidad y diversidad en las tecnologías empleadas para la computación.


Necesidad de altas capacidades de computación enfrentadas a un crecimiento del tráfico en la red de un 22% al año

Objetivo Principal

Diseño y desarrollo de un meta sistema operativo virtualizado y agnóstico de la plataforma para el contínuo loT – Edge – Cloud

CEI Continuum

Meta Sistema Operativo.

aerOS Se construye sobre un sistema operativo tradicional

Contínuo IoT – Edge - Cloud

Recursos informáticos y de almacenamiento interconectados y abstraídos (de la nube al edge) para ofrecer rendimiento, seguridad y rentabilidad óptimos para diversas aplicaciones.

Puntos Clave

Permitir la orquestación óptima de aplicaciones/ dispositivos.

Orquestará servicios en diversos nodos ejecutando distintos sistemas operativos.

Facilitar la generación de redes inteligentes. Comunicación loT segura y de baja latencia mediante 5G privada, TSN y terminales en tiempo real.

Implementar componentes distribuidos y explicables de IA/ML. Proporcionar soluciones AI/ML en contenedores para dispositivos Edge con entrenamiento distribuido y privado

Implementar seguridad, privacidad y confianza descentralizadas. Mejorar la ciberseguridad y la gobernanza de datos con confianza, contenerización y APIs abiertas.

5 Casos de Uso

1

Fabricación

Líneas de producción cognitivas

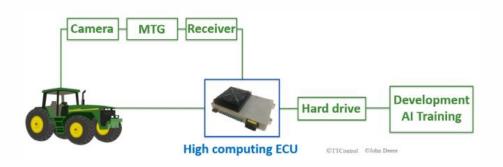
Desplegar y validar procesos de producción cognitivos con un nivel de autonomía MAL4

Energía Renovable

Edge Computing en contenedores cerca de fuentes de energía renovables

Gestión contenerizada de centros de datos Edge ubicados directamente en las fuentes de energía, conectados a infraestructura inteligente posibilitando la continuidad cloud.

5 Casos de Uso



3

Maquinaria

Plataforma de computación de alto rendimiento para maquinaria móvil conectada y cooperativa

Conectar y controlar sistemas agrícolas de gran escala de forma remota y en tiempo real

4

Puestos Marítimos

Servicios inteligentes en el Edge para el Continuum en puertos

Mantenimiento predictivo y prevención de riesgos a través de visión artificial en el Edge.

5 Casos de Uso



Edificios Inteligentes

Edificios inteligentes energéticamente eficientes, seguros para la salud y sostenibles

Predicción y gestión de valores de confort térmico, calidad del aire y consumo energético en un edificio

Pequeños proyectos que validan la arquitectura de aerOS y se enfocan a uno de los casos de uso.

Foco de la 1º Open Call

Extender las funcionalidades de aerOS

Aumentar las aplicaciones de aerOS en los 5 casos de uso verticales considerados en el proyecto

2

Objetivos

Validar y mejorar los componentes técnicos del meta sistema operativo aerOS

Atraer a agentes externos (desarrolladores, empresas expertas en el campo, emprendedores, etc.) para crear nuevas soluciones que aprovechen aerOS

Promover la visibilidad de la arquitectura y los resultados de aerOS en el mercado

Reunir nuevos inputs de expertos en IoT, Edge, redes e industria

Ampliar la base de aplicaciones de aerOS a otros sectores fuera de los ya incluidos en el proyecto

Tipo de actividades

Módulos contenerizados para apoyar mecanismos/funcionalidades distribuidas en el continuum

 Bibliotecas y herramientas AI/ML que se integrarán en el meta-SO de aerOS, componentes virtualizados de la capa de red para extender la validación de aerOS

 Nuevos componentes semánticos y de datos inteligentes relacionados con la confianza, la agregación, la seguridad y cualquier funcionalidad del ámbito de la gobernanza.

Tipo de actividades

Uso innovador del orquestrador de aerOS para demostrar una mayor eficiencia, rendimiento de red, capacidades analíticas u otras mejoras.

Desarrollo y utilización de las funciones de autogestión de aerOS incluidas la autoadaptación y la autoreparación de los elementos de la infraestructura

 Desarrollo de una solución Digital Twin que aproveche el despliegue de aerOS en el contínuo IoT-Edge-Cloud

Visión General

420.000 € de presupuesto para la 1ª Open Call de aerOS

- Máximo 7 propuestas
- Presupuesto máximo 60.000 € por propuesta
- Duración de proyectos 8 meses

Tipo de entidades beneficiarias

- PYMEs Europeas
- Universidades
- Centros de I+D (CTOs)
- A título individual

Fechas destacadas

septiembre 2023 – enero 2024

Fase de Presentación

Fase de Evaluación

febrero 2024 - marzo 2024

abril 2024

Comienzo de la participación

Fin de la participación

noviembre 2024

Criterios de Valoración

Relevancia para aerOS

min. 3 sobre 5

Impacto y Sostenibilidad

min. 4 sobre 5

Balance entre pilotos

Excelencia Técnica

min. 4 sobre 5

Al menos (si es posible) un proyecto en cada uno de los 5 pilotos

Calidad de la Implementación

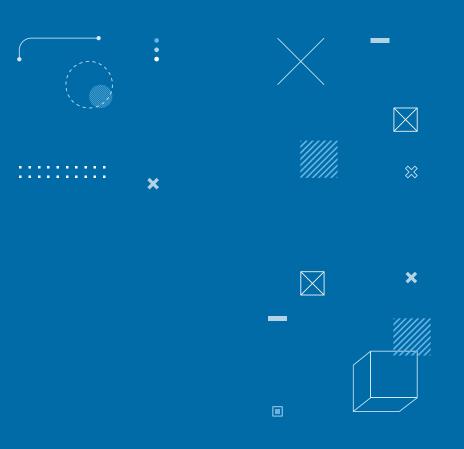
min. 4 sobre 5

Calidad del equipo

min. 4 sobre 5

Más información

https://aeros-project.eu/open-calls/open-call-1/


https://cordis.europa.eu/project/id/101069732

#EENCanHelp

Gracias!

Follow us @EEN_EU

Silvia Rodríguez Del Rey R&D Project Manager CARSA srodriguez@carsa.es

