

H-ACERO R&D Project - Climate neutrality of the steel industry based on new technologies and processes with intensive application of hydrogen

- Funding program: HAZITEK Strategic Projects
- Project Schedule: 2021 2023
- Leader: Sarralle Environment&Energy
- Budget ≈ 9 M€

Sarralle[®] Environment & Energy

Strategic objective \rightarrow contribute to the **decarbonization of the steel sector**, using hydrogen as an alternative energy source.

CFD Simulations

2

Electric Arc Furnace Injectors		
Equipment	Scope	Mode of operation
	NG/O ₂	Burner/Lance
Current Injectors	H ₂ /O ₂	Burner/Lance (Determine accepted H_2 %) 10% H_2 + 30% H_2 + 50% H_2
New Injectors	H ₂ /O ₂	Burner/Lance 100% H ₂ /O ₂

O₂ molar fraction

Velocity profile inside furnace

Research in refractory materials

Investigate the effect the application of hydrogen combustion has on the refractory materials

Refractory samples obtained from refractory manufacturer partners in project.

- Thermal treatments in pure H₂ atmosphere 100% H₂ → 1400°C-8h
- Thermal treatments in water vapor atmosphere to reproduce expected H_2 conditions $1250^{\circ}C 24h \& 1050^{\circ}C 12h$

NG/air combustion: $8.0\% \text{ CO}_2$; $3,4\% \text{ O}_2$; $72.7\% \text{ N}_2$; $16,0\% \text{ H}_2\text{O}$ NG/O₂ combustion: $33.3\% \text{ CO}_2$; $0\% \text{ O}_2$; $0\% \text{ N}_2$; $66,7\% \text{ H}_2\text{O}$ H₂/air combustion: $0\% \text{ CO}_2$; $3,1\% \text{ O}_2$; $67,3\% \text{ N}_2$; $29,6\% \text{ H}_2\text{O}$ H₂/O₂ combustion: $0\% \text{ CO}_2$; $0\% \text{ O}_2$; $0\% \text{ N}_2$; $100\% \text{ H}_2\text{O}$

All samples characterized before and after thermal treatments:

- Microstructural analysis \rightarrow SEM (surface and section)
- Compositional analysis \rightarrow XRD, EDX

Research in process metallurgy

Investigate the effect the application of hydrogen combustion has on the metallurgy of the steels

Several steel grades obtained from steelmaking companies in project.

- Industrial thermal cycles on laboratory scale under reference and new expected hydrogen combustion atmospheres
- Analysis of the oxidation kinetics of steels under reference and hydrogen combustion atmospheres by means of TGA tests (thermogravimetry)

All samples characterized before and after thermal treatments:

- Microstructural/oxide characterization after reheating cycles in reference and hydrogen combustion atmospheres produced at industrial level and in laboratory.
- Evaluation of the possible embrittlement of the steel through laboratory simulations of the first stages of processing (hot working).

Process heating monitoring for steel grades

Objective -> Measure the evolution of temperature of the product to be heated under the usual operating conditions in the reheating furnace

Obtained results \rightarrow Temperature profile of each of the monitored points throughout the heating cycle.

Construction of reheating furnace prototype

- Gas supply (NG, H₂, O₂, air ; 150-200 kW)
- Safety systems for handling combustible gases (NG, H₂, CO)
- Combustion chambers (approximate dimensioning 1,5x1,5x3 m)
- Equipment for the characterization of combustion gases, composition, temperatures
- Fumes extraction system

2022 Q4 finalize construction of reheating furnace prototype

2023 Q1 trials on prototype with H₂ burners