ADVANCED OPTICAL TECHNOLOGIES S.L.

Dr. Iker García Esteban-Barcina

ADVANCED OPTICAL TECHNOLOGIES S.L.

Outline

- > Introduction
- Bladed-rotor monitoring
- Spectroscopy solutions for food and pharmacy industries

- Company mission: To apply photonic solutions to all kind of industries
- Origin: Spin-off from the research group Applied Photonics Group (University of the Basque Country)
- Initial projects:
 - Bladed-rotor monitoring system → Turbines, compressors, fans,...
 - Integration of spectroscopy based sensors in food/pharma processes

Sensor based on a tetrafurcated bundle (TC + TT) ADVANCED OPTICAL TECHNOLOGIES S.L.

TC and TT measurements for the 1st compressor stage

- In collaboration with Air Force Institute of Technology in Warsaw (Poland)
- Engine \rightarrow SO-3 (PZL TS-11 Iskra)

Compressor characteristics

- Rotational speed: 6,900 rpm (idling) to 15,600 rpm (takeoff)
- Sharp blade profile
- Rough blade surface and with corrosion
- 28 blades
 - ➤ Length =100 mm
 - ➤ Chord = 37 mm
 - ➤ Width = 1.5 mm

Optical sensor installation

Photodetectors

Laser module

Optical isolator

Acquired signals

Rotational speed = 15600 rpm

TC results for acceleration

AO	T	E	C	Н
		_		_

ADVANCED	OPTICAL	TECHNOL	OGIES S.L.
MUVMINULU	ULITOAL	LLUIIIVUL	LUUILD J.L.

rpm	TC cycle 1 (mm)	rnm	TC cycle 3	
			rpm	(mm)
7226	2.355		7126	2.359
7960	2.332		8060	2.339
9003	2.327		9072	2.331
10025	2.317		10025	2.320
11229	2.308		11078	2.290
12041	2.285		12089	2.253
13064	2.249		13080	2.213
14112	2.232		14059	2.163
15321	2.216		15098	2.120
15603	2.115		15567	2.114

rpm	TC cycle 2 (mm)	rpm	TC cycle 4 (mm)
7265	2.343	7124	2.341
8533	2.341	8051	2.325
9406	2.323	9293	2.311
10147	2.316	10284	2.306
11174	2.288	11259	2.280
12092	2.265	11980	2.245
13068	2.225	12997	2.209
14055	2.183	14006	2.159
15096	2.128	15047	2.117
15635	2.106	15617	2.103
			-

TC measurement characterization

rpm	Mean TC (mm)	Mean TC (mm)*	Standard deviation (µm)	Standard deviation (µm)*
7000	2.353	2.351	7	8
8000	2.339	2.339	9	9
9000	2.326	2.325	9	10
10000	2.315	2.315	4	5
11000	2.286	2.281	11	7
12000	2.255	2.251	14	9
13000	2.212	2.207	18	11
14000	2.170	2.160	27	12
15000	2.134	2.119	34	5
15600	2.110	2.108	6	6

^{*} Discarding cycle 1

TT results → blade deflections and waterfall diagrams

TT results → All-blade spectrum

Future steps

- Software for real-time measurements
- Measurement of axial vibrations
- Measurements in the hot sections of the engine
- TC measurements in high-speed LPT
- Dynamic pressure sensors development
 - > Extrinsic Fabry-Perot Interferometers
 - MCF Interferometers

Conclusions

- Fine sensor performance at the first trial in field conditions:
 - > TC → 12 µm precision
 - ➤ TT → similar results to those provided by a well-established inductive sensor
- Short time to set-up and calibrate
- Simultaneous and independent configuration for TT and TC measurements

- NIRS (Near Infrared Spectroscopy):
 - Response of molecular bonds within the sample to NIR radiation ($\lambda = 800-2500 \text{ nm}$)
 - > NIR spectrum:
 - Light is either absorbed or scattered
 - Photon energy absorptions representing overtones and combinations mainly associated with -CH, -OH, -NH, and -SH functional groups
 - Information about the chemical composition and physical properties of the sample → Chemometrics
- Control the value chain at each critical point, from incoming goods to finished product release
- Integrated in food/pharmacy systems and equipment for real time measurements

- Advantages:
 - Real time measurements (seconds)
 - Minimal or no sample preparation
 - Optimal results for different kind of products: liquids, powder, grains, slurries,...
 - Multiple parameters determined at the same time
 - Non destructive measurements

- Continuous monitoring of the production quality:
 - Check the identity and quality of raw materials while optimizing their usage
 - > Fast adjustment or stops if the specifications are not met
 - Increase product quality and consistency with tighter control
 - Verify final product specifications and streamline compliance with regulatory guidelines
- Fast payback → reduction of laboratory analysis, continuous process optimization
 - 10 laboratory samples/day x 20€/sample x 200 working days = 40,000€
 - Immediate process corrections minimize waste and re-work
 - Optimization of key parameters for maximum profit margins

Disadvantages:

- Requiring calibration using reference data from standard wetchemistry methods
- Limited diffusion in the industry
- Lack of qualified staff to the correct implementation in industrial processes
- Influence of external factors during spectra acquisition (temperature, moisture, homogenization, size of particles,...)

- System technology and components:
 - ➤ Light source: tungsten lamp
 - ➤ Optical probe
 - > Transmission
 - Reflection
 - Transflection
 - > Spectrometer
 - > PC

Image from Ocean Optics, Inc.

Markets:

- Dairy \rightarrow % fat, protein, lactose, dry matter
- Milk powder production → % fat, protein, moisture
- Oil → free fatty acids, phospholipids, moisture
- Grain and flour → % protein, ashes, moisture, fiber
- Meat and fish → % fat, protein, moisture
- Wine → % alcohol, sugars, acids
- Cosmetics and Pharma → raw material inspection, tablet testing and control drying and blending processes
- Contaminates and adulterants

- Equipment and systems:
 - > Pasteurizers
 - > Fermenting tanks
 - > Reactors
 - ➤ CIP systems
 - Mixing systems
 - > Homogenizers
 - > Evaluation of raw materials and finished product
 - Complete process quality assurance systems by monitoring key parameters in real time.

Thank you for your attention!!

Any questions?

AOTECH

ADVANCED OPTICAL TECHNOLOGIES S.L.